
Neural Networks

• Recurrent networks

• Boltzmann networks

• Deep belief networks

Partially based on a tutorial by Marcus Frean

Recurrent Networks
The output of any neuron can be the input of any

other

Hopfield Network
ALL nodes are input & output

Input = activation: {-1,1}

Activation function:

Recurrent Networks:
Input Processing
Given an input
Asynchronously: (Common)

Step 1: sample an arbitrary unit
Step 2: update its activation
Step 3: if activation does not change, stop, otherwise repeat

Synchronously:
Step 1: save all current activations (time t)
Step 2: recompute activation for all units a time t+1 using

activations at time t
Step 3: if activation does not change, stop, otherwise repeat

Hopfield Network:
Associative Memory
Patterns “stored” in

the network:

Retrieval task: for given input, find the input that is
closest:

Activation over time, given input

Recurrent Networks
Other choices as compared to Hopfield networks:

not all units input
not all units output
different activation functions
different procedures for processing input and reaching

a stable point
non-binary input and output
different learning algorithms

Non-Binary Hopfield Networks
Assume continuous activation functions,

f(x) = (1 / (1 + e-x))
Till now:

Asynchronous updates
Synchronous updates

Third option: Continuous updates
move the activation synchronously in the desired

direction: (is current activation of unit i)

Non-Binary Hopfield Networks
Third option: Continuous updates

move the activation synchronously in the desired
direction: (is current activation of unit i)

equivalent alternative: maintain the input ui for each
unit, move the input in the desired direction

Non-Binary Hopfield Networks
Do continuous updates lead to a stable state?
Energy function:

Does energy decrease in update steps? Prove that:

Non-Binary Hopfield Networks

Product rule:

Rewrite: and use wij symmetric

Non-Binary Hopfield Networks

Last term equals a unit input update in a time step

Only if weights are symmetric!!!

Recurrent Backpropagation
Any unit can be input/output; define error for each

node:

where is expected output, current output

Define error as

Essentially, we determine an update

(After continuous updates)

Recurrent Backpropagation
Remember: “traditional” backpropagation:

(Output)

(Others)

x1

x2
4

5

3
6

7 9

8 x8
x9

ε1
ε2

4

5

3
6

7 9

8 ε8
ε9

w83

w97w52 w75

w31

Recurrent Backpropagation
New update rules for weights:

and use continuous updates to find s

 → Similar to continuous activation
 Generalizes ordinary backpropagation→
 → Assuming stable state exists

Old

“Simple Recurrent Networks”
Elman network:

one hidden layer
the output of each hidden

node is copied to a “context
unit”

operates on a sequence of
patterns

context units are used as
input when the next pattern
is processed

hence when sequences of
patterns are processed, the
NN has a memory

Backpropagation through time
Step 1: unfold network

Step 2: perform backpropagation on this network, providing
patterns at, at+1, ... in order

Step 3: average weights to obtain weights for original network

Hopfield Networks:
Limitations
Assume 4 patterns over 3 variables:

-1 1 1
1 -1 1
1 1 -1
-1 -1 -1

Hebbian rule: every weight in the network is

Value of all weights?

Boltzmann Machines
Extension of Hopfield networks

(symmetric weights, +1, -1 activations)
hidden units
stochastic: activate with a probability

where

and

 → The network can “walk” out of local minima

Boltzmann Machines
Each state is reachable from every other state
If we “simulate” the network for a long time, each

state is encountered with a probability

where
Z is a constant that ensures that the sum of

probabilities over all states is 1
H(S) is the energy of the state:

(Boltzmann distribution)

Boltzmann Machines
Assume a subset of units X is visible

(the remainder is hidden)

Learning task: find weights such that the probability
of generating training data is high (i.e. training
examples have high probability, others low)

similar to Hopfield networks: “retrieve training
examples” with high probability

Boltzmann Machines
Probability of a training example:

Likelihood (probability) of training data:

Perform gradient descent:

All possible states for hidden units

Boltzmann Machines
Gradient turns out to be (without proof):

here
 is the expected value of

according to the network, assuming we always fix the
visible nodes to a pattern in the training data

 is the expected value of
according to the network, without fixing the visible
nodes

Product activation of nodes

Boltzmann Machines
Calculating : “Gibbs sampling”:

initialize network in random state
run a simulation for a long time (let's say n epochs,

asynchronous updates)
count how many times Si and Sj are in each of the possible

states
Si Sj

 1 1 n1
-1 1 n2
 1 -1 n3
-1 -1 n4

calculate expected value (n1 – n2 – n3 + n4) / n

Boltzmann Machines
Calculating : repeated Gibbs sampling
For each training pattern:

fix visible nodes to their value
run Gibbs sampling, not allowing visible nodes to

change
calculate expected value from this run

Average over all training patterns

Boltzmann Machines
Disadvantages:

training is very slow (long simulations)
training is inaccurate (if simulations don't converge

quickly enough)
Not usable in practice
Usable modification:

Restricted Boltzmann Machines (RBMs)
restricted structure: only links between hidden and

visible units
different learning algorithm

Restricted Boltzmann Machines
Structure

Calculating is easy:
no sampling is needed (given fixed visible layer, we can calculate
the probability that a hidden unit is in a given state exactly, and
hence the probability that a pair of units is in a certain state)

Restricted Boltzmann Machines
Optimization 1: “alternating Gibbs sampling”: iterate

between hidden and visible layer, update the whole layer

Optimization 2: start the sampling process from a pattern
(without “fixing” or “clamping” this pattern)

Restricted Boltzmann Machines
Optimization 3: only 2 iterations of sampling

(for each training
pattern)

Computed in the same way from the visible state

Restricted Boltzmann Machines
Consequence: Restricted Boltzmann Machines can be

learned efficiently, without extensive sampling

only two iterations of “alternating Gibbs sampling”

use exact calculations to compute the probability that a
pair of units in a given state, which allows to calculate
the expected value of this pair efficiently

Deep Belief Networks
“Hot topic” in neural networks

Key idea: learn a deep (many layers) neural network
as an associative memory

Deep Belief Networks
Traditional approach

Many layers, one layer of which has few
units

Train the network with the same pattern
as input and as output

Hopefully, the networks learns to
predict training examples

Idea: coordinates in “small layer” identify
the input concisely! (“autoencoding”)

Unfortunately, backpropagation doesn't
work in practice here

Deep Belief Networks
Alternative idea: iteratively use

Restricted Boltzmann Machines

Step 1: construct an initial RBM:

(Only a sketch of the idea is given!)

Deep Belief Networks
Step 2: for each pattern in the training dataset,

sample a pattern in the hidden layer results in a →
new dataset

Step 3: build a RBN for this dataset

Deep Belief Networks
Step 4: repeat for as many layers as desired

Deep Belief Networks
Treat the stack of RBMs

as a directed stochastic
network

Starting from a pattern,
compute output several
times to compute an
expected output

 → Treat network as
probabilistic model

Deep Belief Networks
Intuition: layers of features

Deep Belief Networks

Deep Belief Networks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

