
Neural Networks

•  Recurrent networks

•  Boltzmann networks 

•  Deep belief networks

Partially based on a tutorial by Marcus Frean



Recurrent Networks
The output of any neuron can be the input of any 

other



Hopfield Network
ALL nodes are input & output

Input = activation: {-1,1} 

Activation function:



Recurrent Networks:
Input Processing
Given an input 
Asynchronously:  (Common)

Step 1: sample an arbitrary unit
Step 2: update its activation
Step 3: if activation does not change, stop, otherwise repeat

Synchronously:
Step 1: save all current activations (time t)
Step 2: recompute activation for all units a time t+1 using 

activations at time t
Step 3: if activation does not change, stop, otherwise repeat



Hopfield Network:
Associative Memory
Patterns “stored” in 

the network:

Retrieval task: for given input, find the input that is 
closest:

Activation over time, given input



Recurrent Networks
Other choices as compared to Hopfield networks:

not all units input 
not all units output
different activation functions
different procedures for processing input and reaching 

a stable point
non-binary input and output
different learning algorithms



Non-Binary Hopfield Networks 
Assume continuous activation functions,

f(x) = ( 1 / ( 1 + e-x ) )
Till now:

Asynchronous updates
Synchronous updates

Third option: Continuous updates
move the activation synchronously in the desired 

direction:  (       is current activation of unit i)



Non-Binary Hopfield Networks 
Third option: Continuous updates

move the activation synchronously in the desired 
direction:  (       is current activation of unit i)

equivalent alternative: maintain the input ui for each 
unit, move the input in the desired direction 



Non-Binary Hopfield Networks 
Do continuous updates lead to a stable state?
Energy function:

Does energy decrease in update steps? Prove that:



Non-Binary Hopfield Networks 

Product rule:

Rewrite:                                    and use wij symmetric



Non-Binary Hopfield Networks 

Last term equals a unit input update in a time step 

Only if weights are symmetric!!!



Recurrent Backpropagation
Any unit can be input/output; define error for each 

node:

where          is expected output,            current output

Define error as 

Essentially, we determine an update 

(After continuous updates)



Recurrent Backpropagation
Remember: “traditional” backpropagation:
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Recurrent Backpropagation
New update rules for weights:

and use continuous updates to find       s

 → Similar to continuous activation 
 Generalizes ordinary backpropagation→
 → Assuming stable state exists

Old



“Simple Recurrent Networks”
Elman network:

one hidden layer
the output of each hidden 

node is copied to a “context 
unit”

operates on a sequence of 
patterns

context units are used as 
input when the next pattern 
is processed

hence when sequences of 
patterns are processed, the 
NN has a memory



Backpropagation through time
Step 1: unfold network

Step 2: perform backpropagation on this network, providing 
patterns at, at+1, ...    in order 

Step 3: average weights to obtain weights for original network



Hopfield Networks: 
Limitations
Assume 4 patterns over 3 variables:

-1  1  1
1  -1  1
1 1 -1
-1 -1 -1

Hebbian rule: every weight in the network is

Value of all weights?



Boltzmann Machines
Extension of Hopfield networks

(symmetric weights, +1, -1 activations) 
hidden units
stochastic: activate with a probability

where 

and

 → The network can “walk” out of local minima



Boltzmann Machines
Each state is reachable from every other state
If we “simulate” the network for a long time, each 

state is encountered with a probability

where 
Z is a constant that ensures that the sum of 

probabilities over all states is 1
H(S) is the energy of the state:

(Boltzmann distribution)



Boltzmann Machines
Assume a subset of units X is visible

(the remainder is hidden)

Learning task: find weights such that the probability 
of generating training data is high (i.e. training 
examples have high probability, others low)

similar to Hopfield networks: “retrieve training 
examples” with high probability



Boltzmann Machines
Probability of a training example:

Likelihood (probability) of training data:

Perform gradient descent:

All possible states for hidden units



Boltzmann Machines
Gradient turns out to be (without proof):

here
                              is the expected value of              

according to the network, assuming we always fix the 
visible nodes to a pattern in the training data

                              is the expected value of              
according to the network, without fixing the visible 
nodes

Product activation of nodes



Boltzmann Machines
Calculating                        :  “Gibbs sampling”:

initialize network in random state
run a simulation for a long time (let's say n epochs, 

asynchronous updates)
count how many times Si  and Sj are in each of the possible 

states 
Si  Sj 

 1  1 n1
-1  1 n2
 1 -1 n3
-1 -1 n4

calculate expected value ( n1 – n2 – n3 + n4 ) / n



Boltzmann Machines
Calculating                          : repeated Gibbs sampling
For each training pattern:

fix visible nodes to their value
run Gibbs sampling, not allowing visible nodes to 

change
calculate expected value from this run

Average over all training patterns



Boltzmann Machines
Disadvantages:

training is very slow (long simulations)
training is inaccurate (if simulations don't converge 

quickly enough)
Not usable in practice
Usable modification:

Restricted Boltzmann Machines (RBMs)
restricted structure: only links between hidden and 

visible units
different learning algorithm 



Restricted Boltzmann Machines
Structure

Calculating                              is easy: 
no sampling is needed (given fixed visible layer, we can calculate 
the probability that a hidden unit is in a given state exactly, and 
hence the probability that a pair of units is in a certain state)



Restricted Boltzmann Machines
Optimization 1: “alternating Gibbs sampling”: iterate 

between hidden and visible layer, update the whole layer

Optimization 2: start the sampling process from a pattern 
(without “fixing” or “clamping” this pattern) 



Restricted Boltzmann Machines
Optimization 3: only 2 iterations of sampling

(for each training 
pattern)

Computed in the same way from the visible state



Restricted Boltzmann Machines
Consequence: Restricted Boltzmann Machines can be 

learned efficiently, without extensive sampling

only two iterations of “alternating Gibbs sampling”

use exact calculations to compute the probability that a 
pair of units in a given state, which allows to calculate 
the expected value of this pair efficiently



Deep Belief Networks
“Hot topic” in neural networks

Key idea: learn a deep (many layers) neural network 
as an associative memory 



Deep Belief Networks
Traditional approach

Many layers, one layer of which has few 
units

Train the network with the same pattern 
as input and as output

Hopefully, the networks  learns to 
predict training examples

Idea: coordinates in “small layer” identify 
the input concisely! (“autoencoding”)

Unfortunately, backpropagation doesn't 
work in practice here



Deep Belief Networks
Alternative idea: iteratively use 

Restricted Boltzmann Machines 

Step 1: construct an initial RBM:

(Only a sketch of the idea is given!)



Deep Belief Networks
Step 2: for each pattern in the training dataset, 

sample a pattern in the hidden layer  results in a →
new dataset

Step 3: build a RBN for this dataset



Deep Belief Networks
Step 4: repeat for as many layers as desired



Deep Belief Networks
Treat the stack of RBMs 

as a directed stochastic 
network

Starting from a pattern, 
compute output several 
times to compute an 
expected output

 → Treat network as 
probabilistic model



Deep Belief Networks
Intuition: layers of features



Deep Belief Networks



Deep Belief Networks
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