
Neural Networks

• Recurrent networks

• Boltzmann networks

• Deep belief networks

Partially based on a tutorial by Marcus Frean

Recurrent Networks
The output of any neuron can be the input of any

other

Hopfield Network
ALL nodes are input & output

Input = activation: {-1,1}

Activation function:

Recurrent Networks:
Input Processing
Given an input
Asynchronously: (Common)

Step 1: sample an arbitrary unit
Step 2: update its activation
Step 3: if activation does not change, stop, otherwise repeat

Synchronously:
Step 1: save all current activations (time t)
Step 2: recompute activation for all units a time t+1 using

activations at time t
Step 3: if activation does not change, stop, otherwise repeat

Hopfield Network:
Associative Memory
Patterns “stored” in

the network:

Retrieval task: for given input, find the input that is
closest:

Activation over time, given input

Recurrent Networks
Other choices as compared to Hopfield networks:

not all units input
not all units output
different activation functions
different procedures for processing input and reaching

a stable point
non-binary input and output
different learning algorithms

Non-Binary Hopfield Networks
Assume continuous activation functions,

f(x) = (1 / (1 + e-x))
Till now:

Asynchronous updates
Synchronous updates

Third option: Continuous updates
move the activation synchronously in the desired

direction: (is current activation of unit i)

Non-Binary Hopfield Networks
Third option: Continuous updates

move the activation synchronously in the desired
direction: (is current activation of unit i)

equivalent alternative: maintain the input ui for each
unit, move the input in the desired direction

Non-Binary Hopfield Networks
Do continuous updates lead to a stable state?
Energy function:

Does energy decrease in update steps? Prove that:

Non-Binary Hopfield Networks

Product rule:

Rewrite: and use wij symmetric

Non-Binary Hopfield Networks

Last term equals a unit input update in a time step

Only if weights are symmetric!!!

Recurrent Backpropagation
Any unit can be input/output; define error for each

node:

where is expected output, current output

Define error as

Essentially, we determine an update

(After continuous updates)

Recurrent Backpropagation
Remember: “traditional” backpropagation:

(Output)

(Others)

x1

x2
4

5

3
6

7 9

8 x8
x9

ε1
ε2

4

5

3
6

7 9

8 ε8
ε9

w83

w97w52 w75

w31

Recurrent Backpropagation
New update rules for weights:

and use continuous updates to find s

 → Similar to continuous activation
 Generalizes ordinary backpropagation→
 → Assuming stable state exists

Old

“Simple Recurrent Networks”
Elman network:

one hidden layer
the output of each hidden

node is copied to a “context
unit”

operates on a sequence of
patterns

context units are used as
input when the next pattern
is processed

hence when sequences of
patterns are processed, the
NN has a memory

Backpropagation through time
Step 1: unfold network

Step 2: perform backpropagation on this network, providing
patterns at, at+1, ... in order

Step 3: average weights to obtain weights for original network

Hopfield Networks:
Limitations
Assume 4 patterns over 3 variables:

-1 1 1
1 -1 1
1 1 -1
-1 -1 -1

Hebbian rule: every weight in the network is

Value of all weights?

Boltzmann Machines
Extension of Hopfield networks

(symmetric weights, +1, -1 activations)
hidden units
stochastic: activate with a probability

where

and

 → The network can “walk” out of local minima

Boltzmann Machines
Each state is reachable from every other state
If we “simulate” the network for a long time, each

state is encountered with a probability

where
Z is a constant that ensures that the sum of

probabilities over all states is 1
H(S) is the energy of the state:

(Boltzmann distribution)

Boltzmann Machines
Assume a subset of units X is visible

(the remainder is hidden)

Learning task: find weights such that the probability
of generating training data is high (i.e. training
examples have high probability, others low)

similar to Hopfield networks: “retrieve training
examples” with high probability

Boltzmann Machines
Probability of a training example:

Likelihood (probability) of training data:

Perform gradient descent:

All possible states for hidden units

Boltzmann Machines
Gradient turns out to be (without proof):

here
 is the expected value of

according to the network, assuming we always fix the
visible nodes to a pattern in the training data

 is the expected value of
according to the network, without fixing the visible
nodes

Product activation of nodes

Boltzmann Machines
Calculating : “Gibbs sampling”:

initialize network in random state
run a simulation for a long time (let's say n epochs,

asynchronous updates)
count how many times Si and Sj are in each of the possible

states
Si Sj

 1 1 n1
-1 1 n2
 1 -1 n3
-1 -1 n4

calculate expected value (n1 – n2 – n3 + n4) / n

Boltzmann Machines
Calculating : repeated Gibbs sampling
For each training pattern:

fix visible nodes to their value
run Gibbs sampling, not allowing visible nodes to

change
calculate expected value from this run

Average over all training patterns

Boltzmann Machines
Disadvantages:

training is very slow (long simulations)
training is inaccurate (if simulations don't converge

quickly enough)
Not usable in practice
Usable modification:

Restricted Boltzmann Machines (RBMs)
restricted structure: only links between hidden and

visible units
different learning algorithm

Restricted Boltzmann Machines
Structure

Calculating is easy:
no sampling is needed (given fixed visible layer, we can calculate
the probability that a hidden unit is in a given state exactly, and
hence the probability that a pair of units is in a certain state)

Restricted Boltzmann Machines
Optimization 1: “alternating Gibbs sampling”: iterate

between hidden and visible layer, update the whole layer

Optimization 2: start the sampling process from a pattern
(without “fixing” or “clamping” this pattern)

Restricted Boltzmann Machines
Optimization 3: only 2 iterations of sampling

(for each training
pattern)

Computed in the same way from the visible state

Restricted Boltzmann Machines
Consequence: Restricted Boltzmann Machines can be

learned efficiently, without extensive sampling

only two iterations of “alternating Gibbs sampling”

use exact calculations to compute the probability that a
pair of units in a given state, which allows to calculate
the expected value of this pair efficiently

Deep Belief Networks
“Hot topic” in neural networks

Key idea: learn a deep (many layers) neural network
as an associative memory

Deep Belief Networks
Traditional approach

Many layers, one layer of which has few
units

Train the network with the same pattern
as input and as output

Hopefully, the networks learns to
predict training examples

Idea: coordinates in “small layer” identify
the input concisely! (“autoencoding”)

Unfortunately, backpropagation doesn't
work in practice here

Deep Belief Networks
Alternative idea: iteratively use

Restricted Boltzmann Machines

Step 1: construct an initial RBM:

(Only a sketch of the idea is given!)

Deep Belief Networks
Step 2: for each pattern in the training dataset,

sample a pattern in the hidden layer results in a →
new dataset

Step 3: build a RBN for this dataset

Deep Belief Networks
Step 4: repeat for as many layers as desired

Deep Belief Networks
Treat the stack of RBMs

as a directed stochastic
network

Starting from a pattern,
compute output several
times to compute an
expected output

 → Treat network as
probabilistic model

Deep Belief Networks
Intuition: layers of features

Deep Belief Networks

Deep Belief Networks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

