
Neural Networks

•  Recurrent networks

•  Boltzmann networks 

•  Deep belief networks

Partially based on a tutorial by Marcus Frean



Recurrent Networks
The output of any neuron can be the input of any 

other



Hopfield Network
ALL nodes are input & output

Input = activation: {-1,1} 

Activation function:



Recurrent Networks:
Input Processing
Given an input 
Asynchronously:  (Common)

Step 1: sample an arbitrary unit
Step 2: update its activation
Step 3: if activation does not change, stop, otherwise repeat

Synchronously:
Step 1: save all current activations (time t)
Step 2: recompute activation for all units a time t+1 using 

activations at time t
Step 3: if activation does not change, stop, otherwise repeat



Hopfield Network:
Associative Memory
Patterns “stored” in 

the network:

Retrieval task: for given input, find the input that is 
closest:

Activation over time, given input



Recurrent Networks
Other choices as compared to Hopfield networks:

not all units input 
not all units output
different activation functions
different procedures for processing input and reaching 

a stable point
non-binary input and output
different learning algorithms



Non-Binary Hopfield Networks 
Assume continuous activation functions,

f(x) = ( 1 / ( 1 + e-x ) )
Till now:

Asynchronous updates
Synchronous updates

Third option: Continuous updates
move the activation synchronously in the desired 

direction:  (       is current activation of unit i)



Non-Binary Hopfield Networks 
Third option: Continuous updates

move the activation synchronously in the desired 
direction:  (       is current activation of unit i)

equivalent alternative: maintain the input ui for each 
unit, move the input in the desired direction 



Non-Binary Hopfield Networks 
Do continuous updates lead to a stable state?
Energy function:

Does energy decrease in update steps? Prove that:



Non-Binary Hopfield Networks 

Product rule:

Rewrite:                                    and use wij symmetric



Non-Binary Hopfield Networks 

Last term equals a unit input update in a time step 

Only if weights are symmetric!!!



Recurrent Backpropagation
Any unit can be input/output; define error for each 

node:

where          is expected output,            current output

Define error as 

Essentially, we determine an update 

(After continuous updates)



Recurrent Backpropagation
Remember: “traditional” backpropagation:
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Recurrent Backpropagation
New update rules for weights:

and use continuous updates to find       s

 → Similar to continuous activation 
 Generalizes ordinary backpropagation→
 → Assuming stable state exists

Old



“Simple Recurrent Networks”
Elman network:

one hidden layer
the output of each hidden 

node is copied to a “context 
unit”

operates on a sequence of 
patterns

context units are used as 
input when the next pattern 
is processed

hence when sequences of 
patterns are processed, the 
NN has a memory



Backpropagation through time
Step 1: unfold network

Step 2: perform backpropagation on this network, providing 
patterns at, at+1, ...    in order 

Step 3: average weights to obtain weights for original network



Hopfield Networks: 
Limitations
Assume 4 patterns over 3 variables:

-1  1  1
1  -1  1
1 1 -1
-1 -1 -1

Hebbian rule: every weight in the network is

Value of all weights?



Boltzmann Machines
Extension of Hopfield networks

(symmetric weights, +1, -1 activations) 
hidden units
stochastic: activate with a probability

where 

and

 → The network can “walk” out of local minima



Boltzmann Machines
Each state is reachable from every other state
If we “simulate” the network for a long time, each 

state is encountered with a probability

where 
Z is a constant that ensures that the sum of 

probabilities over all states is 1
H(S) is the energy of the state:

(Boltzmann distribution)



Boltzmann Machines
Assume a subset of units X is visible

(the remainder is hidden)

Learning task: find weights such that the probability 
of generating training data is high (i.e. training 
examples have high probability, others low)

similar to Hopfield networks: “retrieve training 
examples” with high probability



Boltzmann Machines
Probability of a training example:

Likelihood (probability) of training data:

Perform gradient descent:

All possible states for hidden units



Boltzmann Machines
Gradient turns out to be (without proof):

here
                              is the expected value of              

according to the network, assuming we always fix the 
visible nodes to a pattern in the training data

                              is the expected value of              
according to the network, without fixing the visible 
nodes

Product activation of nodes



Boltzmann Machines
Calculating                        :  “Gibbs sampling”:

initialize network in random state
run a simulation for a long time (let's say n epochs, 

asynchronous updates)
count how many times Si  and Sj are in each of the possible 

states 
Si  Sj 

 1  1 n1
-1  1 n2
 1 -1 n3
-1 -1 n4

calculate expected value ( n1 – n2 – n3 + n4 ) / n



Boltzmann Machines
Calculating                          : repeated Gibbs sampling
For each training pattern:

fix visible nodes to their value
run Gibbs sampling, not allowing visible nodes to 

change
calculate expected value from this run

Average over all training patterns



Boltzmann Machines
Disadvantages:

training is very slow (long simulations)
training is inaccurate (if simulations don't converge 

quickly enough)
Not usable in practice
Usable modification:

Restricted Boltzmann Machines (RBMs)
restricted structure: only links between hidden and 

visible units
different learning algorithm 



Restricted Boltzmann Machines
Structure

Calculating                              is easy: 
no sampling is needed (given fixed visible layer, we can calculate 
the probability that a hidden unit is in a given state exactly, and 
hence the probability that a pair of units is in a certain state)



Restricted Boltzmann Machines
Optimization 1: “alternating Gibbs sampling”: iterate 

between hidden and visible layer, update the whole layer

Optimization 2: start the sampling process from a pattern 
(without “fixing” or “clamping” this pattern) 



Restricted Boltzmann Machines
Optimization 3: only 2 iterations of sampling

(for each training 
pattern)

Computed in the same way from the visible state



Restricted Boltzmann Machines
Consequence: Restricted Boltzmann Machines can be 

learned efficiently, without extensive sampling

only two iterations of “alternating Gibbs sampling”

use exact calculations to compute the probability that a 
pair of units in a given state, which allows to calculate 
the expected value of this pair efficiently



Deep Belief Networks
“Hot topic” in neural networks

Key idea: learn a deep (many layers) neural network 
as an associative memory 



Deep Belief Networks
Traditional approach

Many layers, one layer of which has few 
units

Train the network with the same pattern 
as input and as output

Hopefully, the networks  learns to 
predict training examples

Idea: coordinates in “small layer” identify 
the input concisely! (“autoencoding”)

Unfortunately, backpropagation doesn't 
work in practice here



Deep Belief Networks
Alternative idea: iteratively use 

Restricted Boltzmann Machines 

Step 1: construct an initial RBM:

(Only a sketch of the idea is given!)



Deep Belief Networks
Step 2: for each pattern in the training dataset, 

sample a pattern in the hidden layer  results in a →
new dataset

Step 3: build a RBN for this dataset



Deep Belief Networks
Step 4: repeat for as many layers as desired



Deep Belief Networks
Treat the stack of RBMs 

as a directed stochastic 
network

Starting from a pattern, 
compute output several 
times to compute an 
expected output

 → Treat network as 
probabilistic model



Deep Belief Networks
Intuition: layers of features



Deep Belief Networks



Deep Belief Networks
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