Neural Networks

- Recurrent networks
- Boltzmann networks
- Deep belief networks

Partially based on a tutorial by Marcus Frean

Recurrent Networks

The output of any neuron can be the input of any other

Hopfield NetworkALL nodes are input & output

Activation function:

Input = activation: {-1,1}

Recurrent Networks:

Input Processing

- Given an input $ec{x}$
- Asynchronously: (Common)
 - Step 1: sample an arbitrary unit
 - Step 2: update its activation
 - **Step 3:** if activation does not change, stop, otherwise repeat

Synchronously:

- **Step 1:** save all current activations (time *t*)
- Step 2: recompute activation for all units a time t+1 using activations at time t
- Step 3: if activation does not change, stop, otherwise repeat

Hopfield Network:

Associative Memory

Patterns "stored" in the network:

 Retrieval task: for given input, find the input that is closest:

Recurrent Networks

- Other choices as compared to Hopfield networks:
 - not all units input
 - not all units output
 - different activation functions
 - different procedures for processing input and reaching a stable point
 - non-binary input and output
 - different learning algorithms

• Assume continuous activation functions, $f(x) = (1 / (1 + e^{-x}))$

Till now:

- Asynchronous updates
- Synchronous updates
- Third option: Continuous updates
 - move the activation synchronously in the desired direction: (V_i is current activation of unit *i*)

$$\frac{dV_i}{dt} = \eta \left(-V_i + f(\sum_j w_{ij}V_j) \right)$$

Third option: Continuous updates

• move the activation synchronously in the desired direction: (V_i is current activation of unit *i*)

$$\frac{dV_i}{dt} = \eta \left(-V_i + f(\sum_j w_{ij}V_j) \right)$$

• **equivalent alternative:** maintain the **input** *u*_{*i*} for each unit, move the *input* in the desired direction

$$\frac{du_i}{dt} = \eta \left(-u_i + \sum_j w_{ij} V_j \right)$$

- Do continuous updates lead to a stable state?
- Energy function:

$$H = -\frac{1}{2} \sum_{ij} w_{ij} V_i V_j + \sum_i \int_0^{V_i} f^{-1}(V) dV$$

Does energy decrease in update steps? Prove that:

$$\frac{dH}{dt} \le 0$$

$$\frac{dH}{dt} = -\frac{d\frac{1}{2}\sum_{ij}w_{ij}V_iV_j}{dt} + \sum_i \frac{d\int_0^{V_i} f^{-1}(V)dV}{dt}$$

Product rule:

 $\frac{dH}{dt} = -\frac{1}{2} \sum_{ij} w_{ij} \frac{V_i}{dt} V_j - \frac{1}{2} \sum_{ij} w_{ij} \frac{V_j}{dt} V_i + \sum_i f^{-1}(V_i) \frac{dV_i}{dt}$ • Rewrite: $u_i = f^{-1}(V_i)$ and use w_i symmetric $\frac{dH}{dt} = -\sum_i \frac{dV_i}{dt} \left(\sum_j w_{ij} V_j - u_i\right)$

$$\frac{dH}{dt} = -\sum_{i} \frac{dV_i}{dt} \left(\sum_{j} w_{ij}V_j - u_i\right)$$

Last term equals a unit input update in a time step

$$\frac{dH}{dt} = -\sum_{i} \frac{1}{\eta} \frac{dV_i}{dt} \frac{du_i}{dt} = -\sum_{i} \frac{1}{\eta} g'(u_i) \left(\frac{du_i}{dt}\right)^2 \le 0$$

Only if weights are symmetric!!!

Recurrent Backpropagation

 Any unit can be input/output; define error for each node:

$$E_{k} = \begin{cases} \xi_{k} - V_{k} & \text{if } k \text{ is an output unit} \\ 0 & \text{otherwise} \end{cases}$$

where ξ_{k} is expected output, V_{k} current output (After continuous updates)
Define error as $E = \frac{1}{2} \sum_{k} E_{k}^{2}$

 ∂E

• Essentially, we determine an update $\Delta w_{pq} = -\eta \frac{\partial u}{\partial u}$

Recurrent Backpropagation

• Remember: "traditional" backpropagation: $\Delta_i = E_i g'(u_i) \qquad \text{(Output)}$ $\Delta_j = g'(u_j) \sum_i w_{ji} \Delta_i \quad \text{(Others)}$ $w_{pq} \leftarrow w_{pq} + \underbrace{\eta \cdot V_p \cdot \Delta_q}_{\Delta w_{pq}}$

Recurrent Backpropagation

New update rules for weights: $\Delta_i = g'(u_i)Y_i$ $w_{pq} \leftarrow w_{pq} + \eta \cdot V_p \cdot \Delta_q$ Δw_{pq} and use continuous updates to find Y_i s $\frac{\partial Y_i}{\partial dt} = \eta' \left(-Y_i + \sum_p w_{ip} \Delta_p + E_i \right)$ continuous activation
s ordinary backpropagation $\Delta_i = E_i g'(u_i) \quad \text{Old}$ $\Delta_j = g'(u_j) \sum_i W_{ji} \Delta_i$ \rightarrow Similar to continuous activation \rightarrow Generalizes ordinary backpropagation → Assuming stable state exists

"Simple Recurrent Networks"

- Elman network:
 - one hidden layer
 - the output of each hidden node is copied to a "context unit"
 - operates on a sequence of patterns
 - context units are used as input when the next pattern is processed
 - hence when sequences of patterns are processed, the NN has a memory

Backpropagation through time

Step 1: unfold network

$$\mathbf{a}_{t} \xrightarrow{\phantom{\mathbf{a}}} f \xrightarrow{\phantom{\mathbf{a}}} \mathbf{x}_{t+1} \xrightarrow{\phantom{\mathbf{a}}} g \xrightarrow{\phantom{\mathbf{a}}} \mathbf{y}_{t+1}$$

 \bigcirc unfold through time \bigcirc

$$\mathbf{a}_{t} \rightarrow \mathbf{a}_{t+1} \rightarrow \mathbf{a}_{t+1} \rightarrow \mathbf{a}_{t+2} \rightarrow \mathbf{a}_{t+3} \rightarrow \mathbf{x}_{t+3} \rightarrow \mathbf{y}_{t+3}$$
$$\rightarrow \mathbf{x}_{t+1} \rightarrow \mathbf{x}_{t+1} \rightarrow \mathbf{f}_{2} \rightarrow \mathbf{x}_{t+2} \rightarrow \mathbf{f}_{3} \rightarrow \mathbf{x}_{t+3} \rightarrow \mathbf{g} \rightarrow \mathbf{y}_{t+3}$$

Step 2: perform backpropagation on this network, providing patterns a_t, a_{t+t}, ... in order

Step 3: average weights to obtain weights for original network

Hopfield Networks:

Limitations

- Assume 4 patterns over 3 variables:
- Hebbian rule: every weight in the network is

$$1/N\sum_{\mu}\xi^{\mu}_{i}\xi^{\mu}_{j}$$

Value of all weights?

- Extension of Hopfield networks
 - (symmetric weights, +1, -1 activations)
 - hidden units

• stochastic: activate with a probability $p(S_i = +1) = g(h_i)$

where
$$h_i = \sum_j w_{ij} S_j$$

and $g(h) = \frac{1}{1 + e^{-2/Th}}$

 $(\beta = 1/T)$

→ The network can "walk" out of local minima

- Each state is reachable from every other state
- If we "simulate" the network for a long time, each state is encountered with a probability

$$p(S) = e^{\beta H(S)}/Z$$
 (Boltzmann distribution)

where

- Z is a constant that ensures that the sum of probabilities over all states is 1
- *H*(*S*) is the energy of the state:

$$H(S) = -\frac{1}{2} \sum_{ij} w_{ij} S_i S_j$$

- Assume a subset of units X is visible (the remainder is hidden)
- Learning task: find weights such that the probability of generating training data is high (i.e. training examples have high probability, others low)
 - similar to Hopfield networks: "retrieve training examples" with high probability

Probability of a training example:

$$p(\xi^{\mu}) = \sum_{H \blacktriangleleft} p(\xi^{\mu}, H)$$
All possible states for hidden units

Likelihood (probability) of training data:

$$\log L \equiv \sum_{\mu} \log p(\xi^{\mu})$$

Perform gradient descent:

$$\Delta w_{ij} = \eta \frac{\partial}{\partial w_{ij}} \log L$$

• Gradient turns out to be (without proof):

$$\frac{\partial}{\partial w_{ij}} \log L = \langle S_i S_j \rangle_{clamped} - \langle S_i S_j \rangle_{free}$$

here

Product activation of nodes

- $\langle S_i S_j \rangle_{clamped}$ is the expected value of $S_i S_j$ according to the network, **assuming** we always fix the visible nodes to a pattern in the training data
- $\langle S_i S_j \rangle_{free}$ is the expected value of $S_i S_j$ according to the network, **without** fixing the visible nodes

- Calculating $\langle S_i S_j \rangle_{free}$: "Gibbs sampling":
 - initialize network in random state
 - run a simulation for a long time (let's say n epochs, asynchronous updates)
 - count how many times S_i and S_j are in each of the possible

states

- $S_i S_j$
- 1 1 *n1*
- -1 1*n*2
- 1 **-**1 *n*3
- -1 -1 n4
- calculate expected value ($n_1 n_2 n_3 + n_4$) / n

- Calculating $\langle S_i S_j \rangle_{clamped}$: repeated Gibbs sampling
- For each training pattern:
 - fix visible nodes to their value
 - run Gibbs sampling, not allowing visible nodes to change
 - calculate expected value from this run
- Average over all training patterns

Disadvantages:

- training is very slow (long simulations)
- training is inaccurate (if simulations don't converge quickly enough)
- Not usable in practice
- Usable modification:
 - **Restricted Boltzmann Machines (RBMs)**
 - restricted structure: only links between hidden and visible units
 - different learning algorithm

Structure

Calculating $\langle S_i S_j \rangle_{clamped}$ is easy: **no** sampling is needed (given fixed visible layer, we can calculate the probability that a hidden unit is in a given state exactly, and hence the probability that a pair of units is in a certain state)

 Optimization 1: "alternating Gibbs sampling": iterate between hidden and visible layer, update the whole layer

Optimization 2: start the sampling process from a pattern (without "fixing" or "clamping" this pattern)

Optimization 3: only 2 iterations of sampling

- start with a training vector on the visible units
- update all the hidden units in parallel
- update all the visible units in parallel to get a "reconstruction"
- update the hidden units again

$$\Delta w_{ij} = \eta \left[\langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1 \right] \quad \text{(for each training pattern)}$$

Computed in the same way from the visible state pattern

- Consequence: Restricted Boltzmann Machines can be learned efficiently, without extensive sampling
 - only two iterations of "alternating Gibbs sampling"
 - use exact calculations to compute the probability that a pair of units in a given state, which allows to calculate the expected value of this pair efficiently

- "Hot topic" in neural networks
- Key idea: learn a deep (many layers) neural network as an associative memory

Traditional approach

- Many layers, one layer of which has few units
- Train the network with the same pattern as input and as output
- Hopefully, the networks learns to predict training examples
- Idea: coordinates in "small layer" identify the input concisely! ("autoencoding")
- Unfortunately, backpropagation doesn't work in practice here

 Alternative idea: iteratively use Restricted Boltzmann Machines

Step 1: construct an initial RBM:

(Only a sketch of the idea is given!)

- Step 2: for each pattern in the training dataset, sample a pattern in the hidden layer → results in a new dataset
- Step 3: build a RBN for this dataset

Step 4: repeat for as many layers as desired

- Treat the stack of RBMs as a *directed* stochastic network
- Starting from a pattern, compute output several times to compute an expected output
 → Treat network as probabilistic model

Intuition: layers of features

Codes from a 784-1000-500-250-2

